Dissecting the Unusual Biology of the SARS-CoV-2 Delta Variant

An ability to build up higher concentrations of viral particles in people’s airways and mutations that might boost its ability to infect human cells could be what gives the Delta variant its evolutionary edge.

Written byKatarina Zimmer
| 8 min read
art+graph showing rise and fall of three different covid variants

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ABOVE: © ISTOCK.COM, EONEREN

SARS-CoV-2 is fitter than ever. Its latest incarnation, the Delta (or B.1.617.2) variant, is the fastest-spreading form of the virus yet. First identified in India, which it swept through killing hundreds of thousands this spring, Delta has swiftly become the most dominant coronavirus variant worldwide. While it’s already driving rapid increases in hospitalizations and deaths—overwhelmingly in unvaccinated populations—simply by virtue of being more transmissible, it may also cause more severe disease than some previously dominating SARS-CoV-2 variants.

Meanwhile, emerging data suggest that when vaccinated people become infected with the Delta variant and develop symptoms—which, although increasing in frequency, remains exceedingly rare, officials report—they might be as contagious as unvaccinated infected people. Those findings motivated the Centers for Disease Control and Prevention (CDC) to recommend in late July that in places with high transmission of the virus, even fully vaccinated people should wear masks indoors.

The Delta ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform