Environmental RNA Reveals Heat Stress in Water Fleas

The eRNA detection method could one day be used to catch early warning signs of distress in wild ecosystems.

Written byKatherine Irving
| 5 min read
a round water flea is illustrated in black and white on a striated background
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Every inch of the environment that surrounds us, from the ground we tread, to the water we drink and the air we breathe, potentially contains genetic information from other organisms that inhabit our world. But until recently, researchers lacked the tools needed to make use of that information, which comes in the form of environmental DNA (eDNA) or environmental RNA (eRNA). While scientists have begun to explore uses for eDNA in recent years, fewer have tackled its fickler, more elusive sister eRNA. Now, a team of researchers in Canada have used eRNA to identify signs of heat stress in water fleas, they report in a preprint posted November 18 on bioRxiv.

It’s one of the first studies to use eRNA to make inferences about organism health, says Caren Helbing, a biochemist at the University of Victoria in British Columbia, Canada, who wasn’t involved in the research. “There’s been a lot ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot of Katherine Irving

    Katherine Irving is an intern at The Scientist. She studied creative writing, biology, and geology at Macalester College, where she honed her skills in journalism and podcast production and conducted research on dinosaur bones in Montana. Her work has previously been featured in Science.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform