Searching for a Direct Route to Multiple Sclerosis Treatment

Researchers created a new high-throughput tool to hunt for therapies that remyelinate the nervous system.

Written byDeanna MacNeil, PhD
| 3 min read
Microscopy image of a fluorescent green oligodendrocyte surrounded by astrocytes stained red with blue nuclei.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

If the nervous system is an information highway similar to the internet, the myelin sheath is the signal booster that helps the Wi-Fi quickly and consistently reach every room in a home. Just as a patchy internet connection disrupts the flow of information from router to electronic device, demyelination slows or halts nerve impulses between the central nervous system (CNS) and the rest of the body. Cells that are responsible for making myelin are called oligodendrocytes. In a healthy CNS, oligodendrocyte precursor cells (OPCs) migrate to sites of demyelination and produce oligodendrocytes. However, this process is disrupted in demyelination disorders such as multiple sclerosis (MS).1,2

In MS, a patient’s immune system mistakenly attacks the myelin sheath. Inflammation damages the neurons left vulnerable by demyelination, and causes a range of symptoms, including vision loss, muscle weakness and dysfunction, and sensory changes.1,2 Current MS therapies target the immune system to slow disease progression, but scientists seek a more direct therapeutic approach.3 “Just by stopping the immune system, you can’t recover the myelin that’s degraded,” explained Xitiz Chamling, a neuroscientist at Johns Hopkins University. “There is a huge interest in this field to re-establish myelin, which is called remyelination.” This interest stems from the potential to cure or reverse the disease with treatments that promote myelination by oligodendrocytes.3

Microscopy image of a fluorescent green oligodendrocyte surrounded by astrocytes stained red with blue nuclei.
A human oligodendrocyte (green) surrounded by astrocytes, all derived from Chamling’s engineered triple reporter pluripotent stem cell (hPSC) line.
Xitiz Chamling, Johns Hopkins University

Chamling develops tools that scientists can use to search for remyelination therapeutics. In their latest work published in iScience, Chamling’s team created a stem cell-based high-throughput screening platform to identify small molecules that promote remyelination, finding old and new drug candidates to treat MS.4

Continue reading below...

Like this story? Sign up for FREE Newsletter updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

The researchers built the platform by genetically engineering human pluripotent stem cells (hPSCs) with three reporter genes. They used CRISPR-Cas9 to introduce genetic instructions that tell the cells to create protein tags in specific contexts, allowing the researchers to visually monitor and physically capture the stem cells that differentiated into OPCs and oligodendrocytes. Chamling’s team then screened thousands of therapeutics with the potential to promote OPC maturation. “Finding the right drug or therapeutic tool to push those OPCs to mature into oligodendrocytes and help them form myelin is really interesting,” said Chamling.

His work is a unique approach among other established high-throughput screening platforms in the hunt for remyelination therapeutics. “All of the past assays for the screening component have been in rodent systems, both primary and pluripotent stem cell-derived. The challenges of the human system are numerous, and this group really put a lot of effort into tackling each of those challenges,” said Paul Tesar, a developmental biologist from Case Western Reserve University School of Medicine and co-founder of Convelo Therapeutics, who was not involved in the study. “We were really excited when this paper came out, because it provided the first scalable ability to screen in human oligodendrocyte progenitor cells.”

Chamling’s research team used their platform to identify new molecules that promote myelination and corroborated many hits that other researchers such as Tesar previously identified with rodent-derived stem cell screening platforms. This solidified the validity of this new hPSC-derived system and opened opportunities to investigate human-specific pathways on a large scale. “I think it's likely that there are human-specific factors that we could go after,” Tesar explained. “Whether or not they're better or worse than the ones that are conserved across species is a separate question, but I think this does open up a new ability to explore human oligodendrocyte development, which is exciting.”

Research Resources





To learn more, please see "Starting with Human Cell Systems"

Related Topics

Meet the Author

  • Deanna MacNeil, PhD headshot

    Deanna earned their PhD from McGill University in 2020, studying the cellular biology of aging and cancer. In addition to a passion for telomere research, Deanna has a multidisciplinary academic background in biochemistry and a professional background in medical writing, specializing in instructional design and gamification for scientific knowledge translation. They first joined The Scientist's Creative Services team part time as an intern and then full time as an assistant science editor. Deanna is currently an associate science editor, applying their science communication enthusiasm and SEO skillset across a range of written and multimedia pieces, including supervising content creation and editing of The Scientist's Brush Up Summaries.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies