Next Generation: Robotic Inchworm

Researchers use 3D printing to create miniature robots powered by rat cardiac cells that move like caterpillars.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A caterpillar-like robot powered by cardiac cell contractions.Elise A. Corbin.

Device: Researchers used 3D printing technology to create centimeter-long robots, powered by contracting rat cardiac cells, which move by inching along a surface. Published last week (November 15) in Scientific Reports, the study clarifies some principles of biobot design, while demonstrating how 3D printing facilitates the process of robot construction.

“The merger of tissue engineering and 3D printing is very exciting,” said Henry Hess, a biomedical engineer at Columbia University who was not involved with the project. 3D printing technology makes fabrication of biobots easy, precise, and reproducible, allowing researchers to concentrate on refining the engineering principles underlying successful biobot design.

In order to make their caterpillar-like biological machine, Rashid Bashir and his colleagues at the University of Illinois at Urbana-Champaign used a 3D printer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sabrina Richards

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours