Nitrogen-Fixing Bacterium Could Cut Biofuel Costs

Ethanol-producing Zymomonas mobilis can live on nitrogen gas, potentially cutting costs and environmental waste in biofuel production.

Written byJenny Rood
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

UNIVERSITY OF INDIANA, BREAH LASARREA bacterium that turns inedible plant parts into ethanol three- to five-times faster than baker’s yeast (Saccharomyces cerevisiae) can fix—or convert—atmospheric nitrogen gas into ammonium, according to a study published today (February 2) in PNAS. The results suggest that elemental nitrogen could one day replace the traditional industrially produced, expensive, and environmentally damaging ammonium added to biofuel reactors as the source of a nutrient that is necessary for the growth of microorganisms that break down plant cellulose into ethanol.

“It was known already that the Zymomonas genome contains all the genes that are needed, but nobody had checked whether they really are able to fix nitrogen,” said Uldis Kalnenieks of the University of Latvia who was not involved in the research. “Yeast, which also can make ethanol, can’t fix nitrogen, so if another ethanol-producing microorganism can, that is an advantage.”

James “Jake” McKinlay of the University of Indiana and his colleagues had previously engineered a different bacterium, Rhodopseudomonas palustris, to fix nitrogen, with the aim of providing naturally produced ammonium to another species of bacteria in the same culture. To their surprise, the control culture of Z. mobilis on its own grew just as well on nitrogen gas as the coculture of Z. mobilis ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies