No More Dancing in The Dark

Photos: Ian Parker & Mark Miller SHALL WE DANCE? Key immune players cut a rug in a lymph node. Shown are T cells (green), B cells (red), and dendritic cells (blue). Inset: T cells and reticular fibers (red). Both pictures were acquired using TPLSM. Using a technique called two-photon laser- scanning microscopy (TPLSM) researchers can visualize, in three dimensions, the cellular waltzes by which the mammalian immune system develops and reacts to infection. The technique enables two low-en

Written byBrendan Maher
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Using a technique called two-photon laser- scanning microscopy (TPLSM) researchers can visualize, in three dimensions, the cellular waltzes by which the mammalian immune system develops and reacts to infection. The technique enables two low-energy photons to converge additively, exciting fluorophores only at the focal plane, which can be more than 300 µm beneath the surface of the tissue being examined.1 TPLSM represents a vast improvement over confocal laser techniques, which use single high-energy photons and cause photobleaching and phototoxicity, and cannot penetrate tissue. First pioneered in 1990, TPLSM began creeping into bio- logical research by mid-to-late decade; improvements to the reliability and usability of femtosecond lasers have now given it a permanent place.

Two recent forays represent the first time the technology has been used in immunological research. Michael Cahalan, professor of physiology and biophysics, University of California, Irvine, used the technology to track T and B cells in an ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies