On The Fringes Of Life

THE VIRAL TREE OF "LIFE"Compiled by Jill U. AdamsIn the late-19th century, scientists showed that certain infectious agents, such as those causing tobacco mosaic virus and yellow fever, were distinct from other microbes because they were so small. Still, it was presumed that they were living organisms until 1935 when tobacco mosaic virus was crystallized. The discovery of its acellular structure made viruses "seem more like nonliving chemical entities of disease," a view still held by many, writ

Written byJill Adams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Compiled by Jill U. Adams

In the late-19th century, scientists showed that certain infectious agents, such as those causing tobacco mosaic virus and yellow fever, were distinct from other microbes because they were so small. Still, it was presumed that they were living organisms until 1935 when tobacco mosaic virus was crystallized. The discovery of its acellular structure made viruses "seem more like nonliving chemical entities of disease," a view still held by many, writes Luis Villar-real of the University of California, Irvine, in an E-mail. Most definitions of life include the processes of metabolism, growth, and reproduction, which viruses cannot do on their own. But viruses can employ the machinery of the host cell to perform these functions. Further, viruses evolve over time, satisfying the long-term adaptation requirement of living things.

David Mindell of the University of Michigan suggests considering them as living, with recognition of their unique status. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH