Opinion: Life’s X Factor

Did endosymbiosis—and the innovations in membrane bioenergetics it engendered—make it possible for eukaryotic life to evolve?

Written byNick Lane
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

W.W. NORTON & COMPANY, JULY 2015There's a black hole at the heart of biology. Why is it that complex eukaryotic cells share so many fundamental traits, from the nucleus to meiotic sex, which are essentially absent from prokaryotes? Most people would be hard pressed to distinguish a human cell from those of a mushroom, a plant, or a zoospore. Yet those cells diverged a billion years ago, and have utterly different ways of life.

Genes point to an answer, but don't explain the whole story. All eukaryotes share a common ancestor that arose just once in four billion years of evolution. This ancestor was recognizably a modern eukaryotic cell, with a long list of characteristics inherited by its varied descendants, including straight chromosomes, introns and exons, nuclear pore complexes, dynamic cytoskeleton, endomembranes, sex, and mitochondria.

Phylogenetics also point to a chimeric origin of eukaryotes. Long before that common ancestor, an archaeal host cell somehow picked up a population of intracellular bacteria that ultimately evolved into mitochondria. The identity of that host cell and the process by which it acquired mitochondria is controversial. The recent discovery of Lokiarchaeota, which branch close to modern eukaryotes, corroborates the archaeal ancestry of the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH