Opinion: Life’s X Factor

Did endosymbiosis—and the innovations in membrane bioenergetics it engendered—make it possible for eukaryotic life to evolve?

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

W.W. NORTON & COMPANY, JULY 2015There's a black hole at the heart of biology. Why is it that complex eukaryotic cells share so many fundamental traits, from the nucleus to meiotic sex, which are essentially absent from prokaryotes? Most people would be hard pressed to distinguish a human cell from those of a mushroom, a plant, or a zoospore. Yet those cells diverged a billion years ago, and have utterly different ways of life.

Genes point to an answer, but don't explain the whole story. All eukaryotes share a common ancestor that arose just once in four billion years of evolution. This ancestor was recognizably a modern eukaryotic cell, with a long list of characteristics inherited by its varied descendants, including straight chromosomes, introns and exons, nuclear pore complexes, dynamic cytoskeleton, endomembranes, sex, and mitochondria.

Phylogenetics also point to a chimeric origin of eukaryotes. Long before that common ancestor, an archaeal host cell somehow picked up a population of intracellular bacteria that ultimately evolved into mitochondria. The identity of that host cell and the process by which it acquired mitochondria is controversial. The recent discovery of Lokiarchaeota, which branch close to modern eukaryotes, corroborates the archaeal ancestry of the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Nick Lane

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide