Painting Genes in Parallel

Courtesy of Tecan Group Knowledge of the tissues and cells that express particular genes is key to understanding gene function. In situ hybridization (ISH), a popular method for deciphering gene expression, is a slow, labor-intensive, error-prone operation that limits parallel investigation of multiple genes and tissues to what may be carried out quickly by hand. These attributes essentially preclude slide-staining efforts from the high-throughput analyses that are so critical to functional ge

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Knowledge of the tissues and cells that express particular genes is key to understanding gene function. In situ hybridization (ISH), a popular method for deciphering gene expression, is a slow, labor-intensive, error-prone operation that limits parallel investigation of multiple genes and tissues to what may be carried out quickly by hand. These attributes essentially preclude slide-staining efforts from the high-throughput analyses that are so critical to functional genomics research. But a new system from Tecan Group, Männedorf, Switzerland, could change all that.

Based on an established pipetting robot platform, GenePaint--invented by Gregor Eichele of the Max Planck Institute of Experimental Endocrinology, Hannover, Germany--delivers high-throughput performance for ISH, fluorescence ISH (FISH), and immunohistochemistry. The system's automated flexibility eliminates 80% of the manual steps of conventional ISH by performing all fixing, staining, washing, and hybridization operations in a temperature-controlled environment. It also integrates specialized reagent kits familiar to molecular biologists (for example, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Angelo DePalma

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer