Physics Meets the Brain

How Terry Sejnowski went from a grad student in theoretical physics to computational neuroscience's White Knight.

Written byKaren Hopkin
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

It was the grueling qualifying exam for his doctorate in theoretical physics in the 1970's that sparked Terry Sejnowski's interest in neuroscience. The exam "takes a week in which every morning or afternoon is a different topic in physics," he says. "Cramming all of physics into your head for that week is so concentrated that you need to be able to take a break and do something else. That summer I started to read books about the brain."

His light summer reading revealed, among other things, that neuroscientists had a lot to learn. "They didn't know the answers to basic questions, fundamental questions, like how memory is stored," says Sejnowski. His full transformation from a theoretical physicist to an experimental neuroscientist didn't take place until 1978, when Sejnowski, then a postdoc at Princeton, signed up for a summer course in neurobiology at Woods Hole. There he encountered his first set ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH