Singing in the Bird Brain

The songbirds studied by Fernando Nottebohm aren't the only ones singing his praises.

Written byKaren Hopkin
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

The way Fernando Nottebohm sees it, the collection of groundbreaking discoveries he has made regarding the neural basis of vocal learning in songbirds was mostly a matter of good fortune. "A lot of it was just luck - and making hypotheses that were not tight by any means or persuasive, but that were just kind of groping in the dark and saying, 'If this is so, that might be so,'" he shrugs. "It was not a logically compelling process."

Although logic might not have been compelling, the results certainly have been. In his 40 years at Rockefeller University, Nottebohm was (among other things) the first researcher to map the neural circuits used to learn and produce birdsong, the first to uncover large anatomic sex differences in a vertebrate brain, and the first to present comprehensive evidence for neurogenesis and neuronal replacement in the adult brain.

"I wrote a chapter on ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH