Programmed to Die

James King-Holmes/Science Photo Library Predicting natural death is generally impossible, save for those who study Caenorhabditis elegans: They know the precise moment that 131 cells, and only those 131 cells, are programmed to die. The timing and location of cell death is identical during the development of every tiny C. elegans worm. Nobel laureates John Sulston and Robert Horvitz discovered these cellular suicides in 1976 when they mapped the fate of C. elegans' 1,090 cells. "It really di

Written byLaura Defrancesco
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Predicting natural death is generally impossible, save for those who study Caenorhabditis elegans: They know the precise moment that 131 cells, and only those 131 cells, are programmed to die. The timing and location of cell death is identical during the development of every tiny C. elegans worm. Nobel laureates John Sulston and Robert Horvitz discovered these cellular suicides in 1976 when they mapped the fate of C. elegans' 1,090 cells.

"It really did jump out," recalls Sulston. "We had no idea that we were going to be able to see [cell death], and that it would be one of the cell fates, being absolutely determined by the origin of the cell." That map, which is still the only complete cartography of a whole organism, spawned the field of programmed cell-death research, known as apoptosis, and highlights how important the regulation of cell death is to normal life.

DEADLY ORIGINS ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH