Protein Folding: Theory Meets Disease

Protein folding raises some of biology's greatest theoretical challenges. It also lies at the root of many diseases. For example, the fundamental question of whether a protein's final tertiary conformation, sometimes called the native state, can be predicted from its primary amino acid sequence is also of vital importance in understanding the protein's potential capacity to form disease-inducing aggregates. MISS A FOLD, PROMPT A DISEASE Here's a list of protein folding-related disease catego

| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

Protein folding raises some of biology's greatest theoretical challenges. It also lies at the root of many diseases. For example, the fundamental question of whether a protein's final tertiary conformation, sometimes called the native state, can be predicted from its primary amino acid sequence is also of vital importance in understanding the protein's potential capacity to form disease-inducing aggregates.

Protein folding is a hierarchical process, sometimes pictured as an inverted funnel, in three fundamental stages. All proteins begin with a primary amino acid sequence, which folds into intermediate secondary shapes comprising the well-known a helices and b sheets, and then into the final tertiary, or native form, in which they fulfill their function. Some proteins undergo a further phase, combining with other folded proteins to form quarternary structures.

The etiology of protein folding-related diseases can be investigated by forming predictive relationships between these structural layers, and understanding how subtle changes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Philip Hunter

    This person does not yet have a bio.

Published In

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development