Proteins In Parallel

As yesterday's genomics breakthroughs become today's common laboratory techniques, the cutting edge of biology is increasingly found at the level of the proteome.

Written byJeremy Peirce
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

As yesterday's genomics breakthroughs become today's common laboratory techniques, the cutting edge of biology is increasingly found at the level of the proteome. According to Zachary Zimmerman, Senior Research Analyst at Life Science Insights in Framingham, Mass., "The answer to most diseases will lie in the proteins, not in the DNA, so proteomics is going to be huge." Just as nucleic acid arrays contributed heavily to genome-wide gene-expression analyses, protein arrays already are contributing to the study of protein expression and function in the proteome.

A protein array is a set of proteins immobilized at defined positions on a surface – often a glass slide, nitrocellulose membrane, 96-well plate, or silicon wafer – that has been coated with a coupling reagent to ensure protein binding. (The immobilization surfaces may also be color-coded beads in liquid suspension. Mixtures of such beads are the logical equivalent of more conventional arrays, with coded ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH