Radical Thinking

By Karen Hopkin Radical Thinking Tom Tullius has coopted the chemistry of free radicals and other energetic particles to unravel the structures of proteins, DNA, and the alliances they form. © Leah Fasten As a graduate student at Stanford University in the late 1970s, Tom Tullius hung upside down off piers to pluck gelatinous, green-blooded tunicates off the pilings. He took to the fields to harvest bag after bag of bean leaves. And he imported envelo

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

As a graduate student at Stanford University in the late 1970s, Tom Tullius hung upside down off piers to pluck gelatinous, green-blooded tunicates off the pilings. He took to the fields to harvest bag after bag of bean leaves. And he imported envelopes filled with suspicious-looking, powdered Pseudomonas from an overseas chemical and biological warfare facility. All for the sake of his science.

“This was in the old days when you had to make your own protein,” says Tullius, now a professor at Boston University. “You didn’t just stick a gene in E. coli and overexpress it. You had to go to the source.” And sometimes the source was gallons of unpasteurized buttermilk—because pasteurization would denature the protein of interest. “We’d fly down to the Altadena dairy, which was infamous for its periodic outbreaks of Listeria,” says Tullius. “And then we’d take as much buttermilk as we could carry on ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Karen Hopkin

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo