Recombinant DNA: The First Report

Credit: COURTESY OF TERRY SHARRER" /> Credit: COURTESY OF TERRY SHARRER In a series of experiments in the late 1960s and early 1970s, Stanley Cohen, Herbert Boyer, and their colleagues developed the techniques necessary to recombine genes in bacterial plasmids, allowing for their mass production and launching recombinant biotechnology as we know it. In 1973, the Cohen-Boyer team introduced a plasmid fragment from one strain of Escherichia coli, conferring kanamycin resistance in

Written byTerry Sharrer
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

In a series of experiments in the late 1960s and early 1970s, Stanley Cohen, Herbert Boyer, and their colleagues developed the techniques necessary to recombine genes in bacterial plasmids, allowing for their mass production and launching recombinant biotechnology as we know it.

In 1973, the Cohen-Boyer team introduced a plasmid fragment from one strain of Escherichia coli, conferring kanamycin resistance into another E. coli plasmid for tetracycline resistance, and then inserted the recombined DNA into live E. coli cells, which showed both characteristics.1 In 1974, they crossed species barriers, joining DNA fragments from Staphylococcus aureus, for ampicillin resistance, with the tetracycline resistance plasmid, and then cloned it into E. coli.2 Next they crossed kingdom barriers, inserting eukaryotic DNA - it was a ribosome gene from the African clawed frog, Xenopus laevis - into E. coli.3

The bacteria not only mass-produced these "molecular chimeras," but they also transcribed the gene, demonstrating ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel