Record-Setting Corn Grows 45 Feet Tall

A plant breeder succeeds in growing a huge maize plant thanks to a known mutation and a few environmental tricks.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ALL EARS: Jason Karl grows giant maize in specially constructed greenhouses in Costa Rica. COURTESY OF JASON KARLJason Karl has been growing corn since he was a teenager. Starting in 1996, he began planting the crop on his family’s farm in Olean, New York, and soon grew curious about how tall he could make it grow. So he started experimenting.

“Seeing how tall corn can grow comes down to internode length and quantity,” Karl explains—in other words, the number of leaves a stalk has and the distance between those leaves. He learned early on that growing seedlings in a greenhouse greatly increases internode length, in part because the glass or plastic shifts the light spectrum reaching the plant’s leaves. He also learned that certain strains of corn were “night-length reactive,” meaning that the plant increases its number of internodes when grown in a light regimen of long days and short nights. Chiapas 234, an already-tall corn variety from southern Mexico, develops twice as many.

Karl carried on his corn-growing experiments at home while he was in college at Cornell University, a couple of hours’ drive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

April 2017

Targeting Tumors

Precision aim to spare healthy cells

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio