Research Notes

Understanding how bacteria resist antibiotics lies at the crux of staying ahead in the resistance game. A research group at the New York State Health Department's Wadsworth Center in Albany offers a vivid view of how a bacterial protein called Tet (0) shoves aside the antibiotic tetracycline. (C.M.T. Spahn et al., "Localization of the ribosomal protection protein Tet (0) on the ribosome and the mechanisms of tetracycline resistance." Molecular Cell, 7[5]:1037-45, May 2001.) To be an effective dr

Written byRicki Lewis
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share
Understanding how bacteria resist antibiotics lies at the crux of staying ahead in the resistance game. A research group at the New York State Health Department's Wadsworth Center in Albany offers a vivid view of how a bacterial protein called Tet (0) shoves aside the antibiotic tetracycline. (C.M.T. Spahn et al., "Localization of the ribosomal protection protein Tet (0) on the ribosome and the mechanisms of tetracycline resistance." Molecular Cell, 7[5]:1037-45, May 2001.) To be an effective drug, an antibiotic must target a part of the protein synthetic machinery that is present in the bacteria cell but not in human cells. The ribosome is one such area of distinction. "Tetracycline normally binds the center of the small subunit of the ribosome and prevents binding of incoming tRNA, interfering in protein synthesis," says Christian Spahn, a postdoctoral associate in the laboratory of Joachim Frank, director of the computational biology and molecular imaging laboratory and a Howard Hughes Medical Institute investigator. Frank pioneered cryo-EM technology, which quickly freezes thousands of Escherichia coli ribosomes caught blocking tetracycline, thus enabling subsequent SPIDER software analysis. Cryo-EM previously revealed that the ribosome has subregions, described as "heads," "shoulders" "stalks" and "platforms," that subtly shift as a protein forms (J. Frank, R.K. Agrawal, "A ratchet-like inter-subunit reorganization of the ribosome during translocation," Nature, 406:318-22, July 20, 2000). Against this backdrop, Spahn showed how Tet (0) slips in at a region called helix 34, where it sufficiently alters the local conformation to destabilize antibiotic binding.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies