Researching the Channel Change

Courtesy of Roderick MacKinnon, Rockefeller University Playing gatekeeper to human health, channel proteins penetrate all cell membranes. In the nervous system, armies of channels open and close in precise order to create action potentials, the brief membrane depolarizations that act as the primary form of electrical signaling in animals. These action potentials prove so enduring, functioning properly even in extreme experimental preparations, that investigators might consider ion channels in

Written byMike May
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Playing gatekeeper to human health, channel proteins penetrate all cell membranes. In the nervous system, armies of channels open and close in precise order to create action potentials, the brief membrane depolarizations that act as the primary form of electrical signaling in animals. These action potentials prove so enduring, functioning properly even in extreme experimental preparations, that investigators might consider ion channels infallible. But, they are not.

An acquired channelopathy is a nonhereditary breakdown in a channel's function. "Acquired channelopathies arise from multiple causes at any developmental stage," says Jeffrey L. Noebels, Department of Neurology at Baylor College of Medicine, Houston. They develop in autoimmune diseases, such as Rasmussen encephalitis, in which antibodies cause seizures by binding to glutamate receptors. Many toxins also generate acquired channelopathies. An improperly prepared meal of puffer fish serves up tetrodotoxin, which blocks voltage-gated sodium channels. In some cases, environmental assaults even trigger changes in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH