Rethinking Genetic Determinism

Paul H. SilvermanCourtesy of Paul H. SilvermanFor more than 50 years scientists have operated under a set of seemingly incontrovertible assumptions about genes, gene expression, and the consequences thereof. Their mantra: One gene yields one protein; genes beget messenger RNA, which in turn begets protein; and most critically, the gene is deterministic in gene expression and can therefore predict disease propensities.Yet during the last five years, data have revealed inadequacies in this theory.

Written byPaul Silverman
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Courtesy of Paul H. Silverman

For more than 50 years scientists have operated under a set of seemingly incontrovertible assumptions about genes, gene expression, and the consequences thereof. Their mantra: One gene yields one protein; genes beget messenger RNA, which in turn begets protein; and most critically, the gene is deterministic in gene expression and can therefore predict disease propensities.

Yet during the last five years, data have revealed inadequacies in this theory. Unsettling results from the Human Genome Project (HGP) in particular have thrown the deficiencies into sharp relief. Some genes encode more than one protein; others don't encode proteins at all. These findings help refine evolutionary theory by explaining an explosion of diversity from relatively little starting material. We therefore need to rethink our long-held beliefs: A reevaluation of the genetic determinism doctrine, coupled with a new systems biology mentality, could help consolidate and clarify genome-scale data, enabling ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA