Reverse evolution

Genomic collinearity is important in yeast speciation.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The process of speciation (when one species splits into two distinct species that can no longer mate efficiently) takes thousands of years, and the mechanisms underlying speciation are therefore difficult to investigate in the laboratory. In the March 6 Nature, Daniela Delneri and colleagues describe experiments designed to reverse the process of speciation using genomic engineering in yeast (Nature, 421:952-956, March 6, 2003).

The Saccharomyces 'sensu stricto' yeasts comprise six species, and interspecies matings produce sterile hybrids. The S. cerevisiae lab strain HY73 and the S. mikatae natural isolate IFO1816 have similar genomes that differ by a reciprocal chromosomal translocation. Delneri et al. tested the role of this translocation and the importance of genomic collinearity in reproductive isolation. They engineered the HY73 chromosomes so that they resembled those of IFO1816. The rearranged strain could then mate with IFO1816, demonstrating that re-establishing collinearity can reverse the process of speciation and reproductive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jonathan Weitzman

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours