Reverse evolution

Genomic collinearity is important in yeast speciation.

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The process of speciation (when one species splits into two distinct species that can no longer mate efficiently) takes thousands of years, and the mechanisms underlying speciation are therefore difficult to investigate in the laboratory. In the March 6 Nature, Daniela Delneri and colleagues describe experiments designed to reverse the process of speciation using genomic engineering in yeast (Nature, 421:952-956, March 6, 2003).

The Saccharomyces 'sensu stricto' yeasts comprise six species, and interspecies matings produce sterile hybrids. The S. cerevisiae lab strain HY73 and the S. mikatae natural isolate IFO1816 have similar genomes that differ by a reciprocal chromosomal translocation. Delneri et al. tested the role of this translocation and the importance of genomic collinearity in reproductive isolation. They engineered the HY73 chromosomes so that they resembled those of IFO1816. The rearranged strain could then mate with IFO1816, demonstrating that re-establishing collinearity can reverse the process of speciation and reproductive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control