Reverse evolution

Genomic collinearity is important in yeast speciation.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The process of speciation (when one species splits into two distinct species that can no longer mate efficiently) takes thousands of years, and the mechanisms underlying speciation are therefore difficult to investigate in the laboratory. In the March 6 Nature, Daniela Delneri and colleagues describe experiments designed to reverse the process of speciation using genomic engineering in yeast (Nature, 421:952-956, March 6, 2003).

The Saccharomyces 'sensu stricto' yeasts comprise six species, and interspecies matings produce sterile hybrids. The S. cerevisiae lab strain HY73 and the S. mikatae natural isolate IFO1816 have similar genomes that differ by a reciprocal chromosomal translocation. Delneri et al. tested the role of this translocation and the importance of genomic collinearity in reproductive isolation. They engineered the HY73 chromosomes so that they resembled those of IFO1816. The rearranged strain could then mate with IFO1816, demonstrating that re-establishing collinearity can reverse the process of speciation and reproductive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jonathan Weitzman

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences