RNA Therapeutics Enter Clinical Trials

Traditional gene therapy is built on a simple premise: If the absence of a gene product causes disease, then adding the missing gene will cure it.

Written byAmy Adams
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Courtesy of John Rossi

Citing concerns over efficacy, stability, and specificity, many researchers develop localized RNAi therapeutics strategies, such as for use in the eye. A novel variantion on this approach is being developed in which a patient's blood stem cells are transfected with a lentiviral vector expressing an anti-HIV siRNA. Those cells are then reintroduced to the patient, where the hope is that the cells will propagate and develop into mature blood cells capable of fending off HIV infection.

Traditional gene therapy is built on a simple premise: If the absence of a gene product causes disease, then adding the missing gene will cure it. But recently some researchers have turned that idea upside down, using gene therapy to silence genes gone bad. The approach takes advantage of a technique called RNA interference (RNAi) to specifically destroy a targeted mRNA and thereby eliminate the resulting protein.

An RNA-dependent, posttranscriptional ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH