RNAi Inches Toward the Clinic

Courtesy of Cenix BioScience (S. Doering)When Andrew Fire of the Carnegie Institution in Washington, DC, set out to understand some confusing results obtained with antisense RNA in 1998,1 he could not have known he was firing the opening salvo in a biotech revolution. What he stumbled upon was a potent and simple way to knock down gene expression in eukaryotic cells called RNA interference, or RNAi.Researchers in academia and industry alike hitched their wagons to RNAi's star, and in the years f

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Courtesy of Cenix BioScience (S. Doering)

When Andrew Fire of the Carnegie Institution in Washington, DC, set out to understand some confusing results obtained with antisense RNA in 1998,1 he could not have known he was firing the opening salvo in a biotech revolution. What he stumbled upon was a potent and simple way to knock down gene expression in eukaryotic cells called RNA interference, or RNAi.

Researchers in academia and industry alike hitched their wagons to RNAi's star, and in the years following its discovery, the number of papers on RNAi jumped from 15 in 1998 to nearly 1,000 in 2003. Corporations changed direction in midstream, jumping from disappointing projects based on ribozyme and antisense RNA to projects dealing with RNAi. One company, Ribozyme Pharmaceuticals in Boulder, Colo., even rechristened itself Sirna Therapeutics to reflect its new vision. Science named RNAi the technology of the year for 2002, and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amy Adams

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours