Scientists Create First Human-Pig Chimeric Embryos

While the hope is to one day grow organs for transplantation into people, several technical and ethical challenges remain.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

A 4-week-old pig embryo injected with human pluripotent stem cellsSALK INSTITUTE

Researchers may one day overcome the problem of organ shortages for transplantation by growing spare human organs in other animals. A group led by scientists at the Salk Institute for Biological Studies has taken the first big step toward making this a reality: today (January 26) in Cell, they report having grown the first human-pig chimeric embryos.

The team, led by Juan Carlos Izpisua Belmonte, began by creating rat-mouse chimeras—a feat first accomplished in 2010, when scientists in Japan successfully produced a mouse with a pancreas developed from rat pluripotent stem cells. For the present study, Izpisua Belmonte’s group took the experiment one step further, using CRISPR-Cas9 to delete the genes in mice that coded not only for the pancreas, but other organs, such as ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo