Scratching the Cell Surface

Most biological microscopes delve deep into the cell, imaging optical slices that can be put together into a three-dimensional rendering of what lies beneath the cell membrane.

Written byAileen Constans
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Adapted from Nikon Microscopy U (http://www.microscopyu.com)

TIRF microscopy uses the principle of total internal reflection to selectively activate fluorophores near the slide-sample interface while ignoring more deeply embedded ones. That makes the technique useful for probing membrane events, cell motility, and single-molecule biochemistry – anything that occurs near the slide surface.

Most biological microscopes delve deep into the cell, imaging optical slices that can be put together into a three-dimensional rendering of what lies beneath the cell membrane. But a lot of biology takes place at the cell surface. Vesicles and receptors cycle between the membrane and the cytoplasm, propagating cellular signals by way of transient interactions between cellular proteins, macromolecular assemblies, and organelles. To catch a glimpse of these events, a growing number of researchers use total internal reflection fluorescence (TIRF) microscopy, also known as evanescent wave microscopy.

Unlike confocal microscopy, which takes optical slices deep within cells at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies