Seeking a Cellular Oxygen Sensor

The fundamental question of how cells sense oxygen has implications for embryogenesis, cancer, stroke, diabetes, and other ischemic diseases.

| 6 min read
blood vessels hif oxygen sensor nobel prize

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

The fundamental question of how cells sense oxygen has implications for embryogenesis, cancer, stroke, diabetes, and other ischemic diseases. Clearly, this is important work, and many researchers have taken up the task. Yet, despite the publication of hundreds of papers on this subject, no clear consensus exists regarding what the cellular oxygen sensor is, or even the number of sensing mechanisms there might be.

The literature presents several possibilities. One theory holds that a heme-containing protein undergoes a conformational change when bound to oxygen, thereby "sensing" oxygen. Two other related hypotheses center around reactive oxygen species (ROS), which are highly unstable, highly reactive superoxides. One ROS theory holds that, as oxygen levels decrease, so do ROS levels. The second theory hypothesizes the opposite, countering that as oxygen levels decrease, ROS levels increase. Each theory has its supporters and detractors, who have published many articles to advance their particular vantage point.1

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jeffrey Perkel

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo