Self-Experimentation Led to the Discovery of IgE

In the 1960s, immunologists took matters into their own hands—and under their own skin—to characterize an immunoglobulin involved in allergies.

Written byAndrea Anderson
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

IN PURSUIT OF IgE: University of Uppsala researchers Gunnar Johansson and Hans Bennich characterized a protein from a myeloma patient using electrophoresis (drawings to the right reflect results in corresponding gels). The duo saw massive amounts of immunoglobulin (a) in the patient’s serum (ND), eclipsing that in normal serum (NS). Antibodies raised against the ND protein produced markedly similar patterns (b), suggesting ND was an immunoglobulin—a notion supported by removing ND light chains before running the gel (c). The remaining heavy chains belonged to IgE.
See full image: PDF
Reprinted from S.G.O. Johansson, H. Bennich, “Immunological studies of an atypical (myeloma) immunoglobulin,” Immunology, 13:381-94, 1967 with permission from Wiley

In the early 1960s, Kimishige Ishizaka, then an immunologist at the Children’s Asthma Research Institute and Hospital in Denver, volunteered himself as a human pincushion. In pursuit of understanding what was then a mysterious protein called reagin, Ishizaka had colleagues inject solutions of the protein into his own back. His self-torture—and that of peers around the globe who would likewise offer up their own skin for experiments—would ultimately lead to the discovery of immunoglobulin E (IgE), an antibody responsible for allergic reactions.

Researchers had been collecting clues about reagin—a molecule implicated in hay fever, allergic asthma, and other allergic conditions—decades before Ishizaka’s self-experimentation. Inspired by a 1919 report of a new horse allergy in a patient who received blood from a horse-sensitive donor, German researcher ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

June 2017

Foregoing Food

The physiological effects of fasting

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH