Several mutations in a single gene make malaria resistant to chloroquine

Nearly a million children die each year of malaria, but the parasite became resistant to the cheapest drug. Now we know why.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

LONDON Tom Wellems in the United States says it's taken him 15 years. David Warhurst in the UK says he's been studying the problem since 1963. Many others have been worrying at the issue at least as long. But now Wellems at the US National Institute for Allergy and Infectious Diseases (NIAID) and colleagues have pinned down the first of the serious drug resistances, chloroquine-resistant P. falciparum malaria, to a group of mutations in a single gene.

Wellems dubs the affected gene pfcrt, coding for a membrane protein — PFCRT — that sits in the wall of the parasite's food vacuole. The nomenclature means "P. falciparum chloroquine-resistance transporter", but exactly what the gene does, and how the mutations affect its action, is still up for research. Nevertheless it seems that its correlation with drug resistance is very close, in strains from all over the world.

David Warhurst, Professor of Protozoal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Robert Walgate

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development