Shoestring gene therapy

By Aaron Rowe Shoestring gene therapy An RNA synthesizer Courtesy of Alnylam, photography by J. Earle On a frigid weekend in the winter of 2004, a medical charity held a meeting at the Yarrow Hotel in Park City, Utah, to discuss a problem. It had been nearly ten years since geneticists Irwin McLean and Frances Smith had discovered the genetic underpinnings of pachyonychia congenita, a rare and extremely painful skin disorder. But a cure was nowhere in sight.

Written byAaron Rowe
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

On a frigid weekend in the winter of 2004, a medical charity held a meeting at the Yarrow Hotel in Park City, Utah, to discuss a problem. It had been nearly ten years since geneticists Irwin McLean and Frances Smith had discovered the genetic underpinnings of pachyonychia congenita, a rare and extremely painful skin disorder. But a cure was nowhere in sight.

Between runs down nearby ski slopes, several scientists threw out ideas for treating the disease. And one of them stuck. “We had decided that probably the most promising approach was gonna be siRNA-based technology,” says Sancy Leachman, a dermatologist from the University of Utah who helped organize the meeting.

Since pachyonychia congenita is an autosomal-dominant condition caused by the production of misshapen keratin 6a molecules, it seemed reasonable that knocking down the mutant gene could remedy the disorder. The disease affects approximately 5,000 people worldwide, and causes massive ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH