Sir silencing

Chromatin silencing depends on passage through the S-phase of the cell cycle and was widely believed to depend on DNA replication. In two papers in the January 26 Science, Kirchmaier and Rine and Li et al. challenge this dogma by reporting that the establishment of transcriptional silencing can occur in the absence of replication (Science 2001, 291:646-650; Science 2001, 291:650-653). Both groups used an ingenious genetic trick, involving site-specific recombination, to generate non-replicating

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Chromatin silencing depends on passage through the S-phase of the cell cycle and was widely believed to depend on DNA replication. In two papers in the January 26 Science, Kirchmaier and Rine and Li et al. challenge this dogma by reporting that the establishment of transcriptional silencing can occur in the absence of replication (Science 2001, 291:646-650; Science 2001, 291:650-653). Both groups used an ingenious genetic trick, involving site-specific recombination, to generate non-replicating DNA rings containing the silent HMR mating-type locus from budding yeast. Recruiting the silencing protein Sir1 induced silencing at the synthetic silencer without any detectable DNA replication. Furthermore, the authors show that the artificial silent rings mimic features of authentic heterochromatin, including histone hypoacetylation and altered supercoiling. Strangely, despite being independent of replication, silencing still required passage through the S-phase of the cell cycle.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA