Smoke Detectors

Ancient receptors in seeds bind a small molecule in smoke that promotes germination.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PHOENIX MOLECULE: Wildfire ash and smoke generate karrikins, which are sensed by a seed protein, KAI2, stimulating the growth of a new plant in the nutrient-rich ashes of its parents.JAMIE SIMON/THE SALK INSTITUTE FOR BIOLOGICAL STUDIESFires leave behind charred and blackened landscapes. But eventually life returns, sometimes more vibrantly than ever, as some plants thrive, taking advantage of a sun-flooded and largely competition-free environment.

In 1990, South African researcher Hannes de Lange showed that it might be more than increased access to sunlight, nutrients, and space that spurs the proliferation of certain plant species following fire. The secret to the success of these plants could lie in smoke. De Lange found that smoke could stimulate seeds of a fire-sensitive South African shrub to germinate. Nearly a decade ago, University of Western Australia researcher Gavin Flematti and colleagues were the first to identify a potent class of smoke compounds—dubbed karrikins after an Aboriginal word for smoke, “karrik”—that signal to seeds that it’s a good time to grow (Science, 305:977, 2004).

“The big mystery remained, how are [kar­rikins] recognized by plants?” says David Nelson, a geneticist at the University of Georgia ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies