Solving protein folding in your lunch break

While you take time out to eat your lunch, your computer could be busy helping crack one of the biggest challenges of modern biology.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

LONDON. Understanding how proteins fold themselves into complex shapes is vitally important in comprehending how they work. But generating enough computer power to model folding in larger proteins is a feat beyond even the fastest of today's computers.

To help solve the problem, a team of researchers from Stanford University has set up folding@home, a computer network that enlists the help of idle computers around the world to simulate the folding process and distribute the results free of charge. By downloading a simple screen saver from the folding@home website, volunteers can contribute their computers' spare time to the project and help build an international super-computer capable of modeling these complex molecules as they self-assemble.

The idea of enlisting idle computers through the internet has been borrowed from another processing-heavy project — one that is searching for extraterrestrial intelligence. The SETI@home project uses the volunteer concept to analyze radio wave signals ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Andrew McLaughlin

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo