Speeding to the SARS sequence

In November 2002, a deadly respiratory infection first appeared in the Guandong Province of China.

Written byAileen Constans
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

In November 2002, a deadly respiratory infection first appeared in the Guandong Province of China. In the ensuing months, unprecedented international health efforts moved toward isolating and identifying the source of SARS. From late March to early April 2003, research groups from various parts of the world closed in on the cause, a member of the coronavirus family.1 Almost immediately following, the 30 kb genome sequence of the SARS-associated coronavirus was published by researchers at the Centers for Disease Control and Prevention (CDC) in Atlanta,2 and a consortium of Canadian agencies including the British Columbia Cancer Agency (BCCA) Genome Sciences Center in Vancouver.3

The speed of the accomplishment is credited to massive efforts at mobilization and collaboration spearheaded by the World Health Organization. "Laboratories that could be considered under normal circumstances as competitors were brought together and worked together in an exemplary way ... and that made it so that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies