Starfish in the Deep Sea Can See

A study of 13 starfish species reveals that even animals that live at depths where sunlight doesn’t reach have functioning eyes.

abby olena
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Tremaster mirabilis bends an arm to direct its gaze.MARIE HELENE BIRK, UNIVERSITY OF COPENHAGENSome animals that spend their whole lives in the dark—species of fish that thrive in caves, for instance—have dispensed with eyes all together. But in a study published today (February 7) in Proceedings of the Royal Society B, researchers have shown that several types of starfish that live in the deep ocean have working compound eyes at the tips of their arms, much like related species that dwell in shallower water.

“There’s been a lot of work over the years on vision in a variety of fish from shallow water to the deep sea, but there hasn’t been much at all done on vision in animals that sit on the bottom,” says Thomas Cronin, a biologist at University of Maryland, Baltimore County, who did not participate in the work. “It’s a been a question for a long time, what exactly are eyes used for down in these great depths?”

While earlier studies had shown that some starfish that live in shallower, brighter water have and use compound eyes, no one had previously looked at animals occupying the sea floor. “What you see in many other animal groups is that, when you venture deeper into the sea ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide