Stem Cell Know-How

Image: Courtesy of Gwenn-AEL Dnaet ©2002 National Academy of Sciences STEM CELL XENOGRAFT: Identification of human hepatocytes in livers from immune-deficient mice transplanted with human adult hematopoietic stem cells. Photomicrographs of NOD/SCID mouse liver sections from mice transplanted with purified human Lin-CD38-CD34-C1qRp+ cells isolated from umbilical cord blood, harvested 8-10 weeks post-transplant. Tissue sections were stained for HSA (hepatocyte-specific antigen) or c-met

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Stem cells make for hot news. Debates over the ethics of using human embryonic stem cells in research have topped headlines, and current research into the plasticity of adult stem cells has raised hopes that these cells could be a suitable replacement for their embryonic counterparts in a number of therapeutic applications. But often overlooked is the fact that stem cells are tough to grow. They are much less forgiving than regular cell lines, and so greater attention must be paid to their culturing. As it happens, the tools and techniques used by stem cell researchers represent an interesting twist to conventional cell culture.

Embryonic stem cells (ESCs), are derived from the inner cell mass of the blastocyst, the developmental stage of the embryo prior to its implantation in the uterine wall. What distinguishes ESCs from other types of cells is their ability to differentiate into cells from all three ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Aileen Constans

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo