Stem cells for Duchenne?

Adult stem cells taken from humans suffering from Duchenne muscular dystrophy can be genetically modified and used to treat the disease in a mouse model, researchers linkurl:report;http://www.cellstemcell.com/ today in Cell Stem Cell. Duchenne muscular dystrophy is a progressive condition caused by a mutation on the X chromosome that leads to a lack of dystrophin protein in muscle. The mutation is usually caused by a deletion or mutation in the gene, leading to a shift in the reading frame of m

Written byAlla Katsnelson
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share
Adult stem cells taken from humans suffering from Duchenne muscular dystrophy can be genetically modified and used to treat the disease in a mouse model, researchers linkurl:report;http://www.cellstemcell.com/ today in Cell Stem Cell. Duchenne muscular dystrophy is a progressive condition caused by a mutation on the X chromosome that leads to a lack of dystrophin protein in muscle. The mutation is usually caused by a deletion or mutation in the gene, leading to a shift in the reading frame of mRNA translation. In past studies, injecting Duchenne mice with normal muscle cells has temporarily staved off disease symptoms, but that technique does not work reliably and can cause immune rejection. So researchers have linkurl:proposed;http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed&Cmd=ShowDetailView&TermToSearch=16691118&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum delivering muscle progenitor cells instead. Yvan Torrente of the University of Milan, Italy, and colleagues took human blood- and muscle-derived stem cells from Duchenne patients. They used linkurl:antisense oligonucleotides;http://www.the-scientist.com/article/display/21438/ delivered by linkurl:lentiviral vectors;http://www.the-scientist.com/article/display/19298/ to mask the incorrect mRNA splicing sites, thus returning translation to its normal reading frame. They then intramuscularly injected the corrected cells into the sick mice. Within three weeks, the transplanted cells gave rise to muscle fibers and spurred production of the dystrophin protein. The authors caution, however, that using viral vectors may cause tumor formation, and that details of the technique such as its efficiency remain to be worked out. Both the antisense techniques and muscle cell transplantation have been tried before in Duchenne, note linkurl:Kay Davis;http://www.hertford.ox.ac.uk/main/content/view/155/249/ of Oxford University and linkurl:Miranda Grounds;http://school.anhb.uwa.edu.au/personalpages/grounds/ of the University of Western Australia in an accompanying review article. But the combination of the two makes this a proof of principle study that shows that "steady progress is being made toward the goal of stem cell-mediated restoration of dystrophin expression," they write.
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research