Study: Student Athletes Display Brain Abnormalities After One Football Season

MRI scans and other assessments of high school football players reveal changes in brain tissue, correlated to head impacts, after just one season, researchers report.

Written byJoshua A. Krisch
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, LEON KAUFMANOne season of high school football may be all it takes to cause noticeable changes in white matter and brainwave formation, according to a small study of 24 student athletes, which has not yet been peer-reviewed and was presented at the annual meeting (November 28) of the Radiological Society of America in Chicago. Despite no evidence of clinical concussion in any of the players examined, the study revealed a correlation between changes in brain health and players who took the most hits on the field.

“We know that some professional football players suffer from a serious condition called chronic traumatic encephalopathy, or CTE,” coauthor Elizabeth Moody Davenport, a postdoc at UT Southwestern Medical Center in Dallas, said in a press release. “We are attempting to find out when and how that process starts, so that we can keep sports a healthy activity for millions of children and adolescents.”

Davenport and colleagues first scanned each player’s brain before the season started, via MRI scans of white matter and MEG scans of the functional magnetic fields produced by the athletes’ brain waves. The researchers then outfitted each player’s helmet with six accelerometers that gathered specific data about the impacts sustained. After one season of play, they repeated the brain scans.

Direct, frontal ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH