Studying “Stone Man Syndrome,” Scientists Inadvertently Improve Cellular Reprogramming

While studying a rare genetic disease, researchers discovered a signaling pathway linked to the efficiency of reprogramming somatic cells into stem cells.

Written byBen Andrew Henry
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

GLADSTONE INSTITUTES, CHRIS GOODFELLOW

Thanks to a chance discovery, researchers have found a more efficient way to create induced pluripotent stem cells (iPSCs), which are widely used in regenerative medicine research and drug development. The discovery comes from Shinya Yamanaka, the scientist who first created iPSCs in 2006, along with his colleagues at the Gladstone Institutes, and was published in PNAS this week (October 24).

The scientists were originally studying fibrodysplasia ossificans progressiva (FOP), a rare disease in which muscles, tendons, and ligaments turn into bone—a debilitating process for which the disease is called “stone man syndrome.” The researchers hoped to create a cellular model to parse the effects of specific gene mutations, according to a press release, but in the process they discovered that skin cells from FOP ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform