Success with Stem Cell Neurons

Light-controlled neurons made from human embryonic stem cells can activate neural circuits in mice.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA COMMONS, NICOLAS P. ROUGIER

Neurons made from human embryonic stem cells (hESCs) can both send and receive nerve impulses when transplanted into the mouse brain, according to a report published today (November 21) in Proceedings of the National Academy of Sciences. The discovery provides some of the strongest evidence that hESC-derived neurons, which could be used to treat a variety of neurological disorders such as epilepsy, stroke, and Parkinson’s disease, can fully integrate and behave like regular neurons when transplanted into the brain.

“We’ve known for decades that [transplanted neurons] can receive information,” said Jason Weick of the University of Wisconsin, who was the lead author on the study. Once the cells are in the brain, he explained, their electrical activity can be simply recorded. The missing part of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome