Supercomputing in the Life Sciences

Photo: Courtesy of Hewlett-Packard/Compaq The world's fastest supercomputer--Japan's Earth Simulator--occupies an area equivalent to four tennis courts on three floors. It contains 5,120 processors, 10 terabytes of memory, 700 terabytes of hard disk space, and it can perform 40 trillion floating point operations every second. The computer's performance exceeds that of the world's 18 next-fastest computers. It also cost an estimated $350 million (US). Japanese scientists use this supercomputer

Written byAmy Adams
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

The world's fastest supercomputer--Japan's Earth Simulator--occupies an area equivalent to four tennis courts on three floors. It contains 5,120 processors, 10 terabytes of memory, 700 terabytes of hard disk space, and it can perform 40 trillion floating point operations every second. The computer's performance exceeds that of the world's 18 next-fastest computers. It also cost an estimated $350 million (US).

Japanese scientists use this supercomputer to model global weather patterns, a monumentally complex problem. Though biological challenges may be less daunting, life scientists are finding uses for supercomputers, too. Researchers use them to search for disease-associated genes and potential drug targets, and to model protein folding, among other applications. Many investigators, in fact, have probably used a supercomputer without even being aware of it: Run a BLAST (basic local alignment search tool) search through the National Center for Biotechnology Information, and you are interacting--if only remotely--with a supercomputer.

Though the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH