Sustainability for Nanotechnology

FIGURE 1:Courtesy of Vicki ColvinThe cytotoxicity of three fullerene derivatives in cell culture (human dermal fibroblasts, 48-hour exposures). As the derivatization of the fullerene surface changes from a sparingly soluble version (black) to a fully hydroxylated material (blue), the dose that kills half the cells changes over many orders of magnitude. This result highlights the importance of surface coatings and derivatizations to biological activity.When materials and devices are fabricated wi

| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Courtesy of Vicki Colvin

The cytotoxicity of three fullerene derivatives in cell culture (human dermal fibroblasts, 48-hour exposures). As the derivatization of the fullerene surface changes from a sparingly soluble version (black) to a fully hydroxylated material (blue), the dose that kills half the cells changes over many orders of magnitude. This result highlights the importance of surface coatings and derivatizations to biological activity.

When materials and devices are fabricated with tiny dimensions, their properties and applications expand enormously. Small size, which for nanotechnology means less than 100 nm, confers on devices and materials enhanced flexibility and improved performance. We've begun exploiting such properties in a multitude of emerging areas ranging from computing to translational medicine. Yet, just as the promise of nanotechnology becomes more defined, skeptics raise questions about the unforeseen risks this new technology may present for the environment and our health.12

For once, these concerns are not ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Vicki Colvin

    This person does not yet have a bio.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit