Taking A Microscopic View Of Biochemistry And DNA Sequencing

STM/AFM: A BROADENING ARRAY OF APPLICATIONS The scanning tunneling microscope (STM) was developed by physicists Gerd Binnig and Heinrich Rohrer in 1982 to investigate the surfaces of solids, such as silicon (Physical Review Letters 49:57, 1982). Binnig and Rohrer, who were awarded the Nobel Prize in 1986 for the invention of STM, were quick to recognize the great potential of their instrument in biology and chemistry. Imaging with STM can be done only on electrically conducting substrates, how

Written bySara Brudnoy
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

STM/AFM: A BROADENING ARRAY OF APPLICATIONS The scanning tunneling microscope (STM) was developed by physicists Gerd Binnig and Heinrich Rohrer in 1982 to investigate the surfaces of solids, such as silicon (Physical Review Letters 49:57, 1982). Binnig and Rohrer, who were awarded the Nobel Prize in 1986 for the invention of STM, were quick to recognize the great potential of their instrument in biology and chemistry. Imaging with STM can be done only on electrically conducting substrates, however, which has presented problems for biological applications. A second instrument, the atomic force microscope (AFM), invented by Binnig in 1986 - this time along with Calvin Quate and Christopher Gerber -- is not hampered by this limitation (Physical Review Letters, 56:930, 1986). Although at present most research using these tools is being conducted in the fields of physics, chemistry, and materials science, applications in biology are growing rapidly. How they Work STM ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies