Taking Shape

By Richard P. Grant Taking Shape Aimin Tang / Istockphoto.com HIDDEN JEWEL Floral bouquets are the most ephemeral of presents. The puzzle of how flowers get their shape, however, is more enduring. It’s a question that has kept Enrico Coen, a plant biologist at the John Innes Centre in the United Kingdom, busy for more than twenty years. Now he thinks he may finally have a handle on the answer, thanks to a clever combination of detailed image an

Written byRichard P. Grant
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Floral bouquets are the most ephemeral of presents. The puzzle of how flowers get their shape, however, is more enduring. It’s a question that has kept Enrico Coen, a plant biologist at the John Innes Centre in the United Kingdom, busy for more than twenty years. Now he thinks he may finally have a handle on the answer, thanks to a clever combination of detailed image analysis and computer modeling—an approach typically applied to engineering problems.

A Theory Blossoms

Nonslip role for petal cells

Flower power in motion

Video: Model Flowers

Although there have been sustained efforts to identify genes involved in organ growth and shape in Drosophila, how genetics translate into the final shape of a wing, for example, is largely unknown. Coen and his colleagues used the flowers of Antirrhinum majus—better known as the snapdragon—to build a computational framework that would allow them to make experimentally testable predictions ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies