Telomere Without End, Amen: Looking Into Longevity with Telomere Detection Kits

Date: March 30, 1998 Author: Laura DeFrancesco T he excitement over telomerase continues to mount as evidence accumulates that makes the connection between telomere length and cell lifespan likely to be more than a coincidence. The most recent findings show that the age span of cultured cells, normally limited to around 50 cell doublings--the so-called Hayflick limit, named for the scientist who first observed that the lifespan of cultured cells was finite--can be more than doubled by transfec

Written byLaura Defrancesco
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Date: March 30, 1998
Author: Laura DeFrancesco

T he excitement over telomerase continues to mount as evidence accumulates that makes the connection between telomere length and cell lifespan likely to be more than a coincidence. The most recent findings show that the age span of cultured cells, normally limited to around 50 cell doublings--the so-called Hayflick limit, named for the scientist who first observed that the lifespan of cultured cells was finite--can be more than doubled by transfecting them with telomerase genes (A.G. Bodnar et al., Science, 279:349-52, 1998). These findings come on the heels of a series of observations correlating the loss of telomerase activity and/or the shortening of the ends of chromosomes (telomeres) with the loss of proliferative capacity, an observation that holds true in a number of situations: somatic (limited proliferative capacity) as compared to germ cells (larger proliferative capacity); normal tissue (limited) versus malignant tumors (unlimited); ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies