Telomere Without End, Amen: Looking Into Longevity with Telomere Detection Kits

Date: March 30, 1998 Author: Laura DeFrancesco T he excitement over telomerase continues to mount as evidence accumulates that makes the connection between telomere length and cell lifespan likely to be more than a coincidence. The most recent findings show that the age span of cultured cells, normally limited to around 50 cell doublings--the so-called Hayflick limit, named for the scientist who first observed that the lifespan of cultured cells was finite--can be more than doubled by transfec

Written byLaura Defrancesco
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

Date: March 30, 1998
Author: Laura DeFrancesco

T he excitement over telomerase continues to mount as evidence accumulates that makes the connection between telomere length and cell lifespan likely to be more than a coincidence. The most recent findings show that the age span of cultured cells, normally limited to around 50 cell doublings--the so-called Hayflick limit, named for the scientist who first observed that the lifespan of cultured cells was finite--can be more than doubled by transfecting them with telomerase genes (A.G. Bodnar et al., Science, 279:349-52, 1998). These findings come on the heels of a series of observations correlating the loss of telomerase activity and/or the shortening of the ends of chromosomes (telomeres) with the loss of proliferative capacity, an observation that holds true in a number of situations: somatic (limited proliferative capacity) as compared to germ cells (larger proliferative capacity); normal tissue (limited) versus malignant tumors (unlimited); ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH