The Delicate Toxicity Balance in Drug Discovery

In 2000, the type 2 diabetes drug Rezulin was withdrawn from the market after several dozen patients required a liver transplant or died due to liver failure.

Written byUsha Sankar
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

In 2000, the type 2 diabetes drug Rezulin was withdrawn from the market after several dozen patients required a liver transplant or died due to liver failure. While the vast majority of drugs that make it to market are safe, such high-profile failures show that the drug development process is far from flawless.

The good news is that the number of targets has increased, as has the supply and demand for high-throughput assays. However, this new revolution in biomedical science has not resulted in a pipeline brimming with new drugs. While chemical entities that show biological activity against a given target can become lead compounds, those compounds still need to be turned into viable drugs.

The typical compound entering a Phase I clinical trial has been through roughly a decade of rigorous pre-clinical testing, but still only has an 8% chance of reaching the market.1 Some of this high attrition ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH