The Footprints of Winter

By Ralf Müller and Justin Goodrich The Footprints of Winter Epigenetic marks laid down during the cold months of the year allow flowering in spring and summer. Iain Sarjeant / ISTOCKIPHOTO.COM Many plants that grow in climates with a cold winter require growth for several months at low temperatures—a process called vernalization—to promote flowering in spring, when days lengthen and temperatures increase. Without this period of cold, plants wo

Written byRalf Muller and Justin Goodrich
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Many plants that grow in climates with a cold winter require growth for several months at low temperatures—a process called vernalization—to promote flowering in spring, when days lengthen and temperatures increase. Without this period of cold, plants would grow leaves in the spring, but would fail to flower. This phenomenon, familiar to every horticulturist, was difficult to explain with genetics alone; something occurred during those cold months that left a mark, which, in effect, released a switch that permitted flowering in spring. In recent years, the field has looked beyond the genome and found that vernalization is controlled by a wide range of epigenetic mechanisms.

Researchers studying the genetics of flowering found that the flowering switch was controlled by two central players—the genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF CONSTANS1 (SOC1), which were held in the “off” position by the product of the gene called FLOWERING LOCUS C (FLC).1 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH