Chromosome Clusters Help Keep the Genome Together

Without certain DNA-binding proteins, chromosomes can escape the cell nucleus.

Written bySukanya Charuchandra
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The paper

M. Jagannathan et al., “A conserved function for pericentromeric satellite DNA,” eLife, 7:e34122, 2018.

Between cell divisions, pericentromeric DNA—noncoding, repetitive satellite DNA abundant around centromeres—bunches together across several chromosomes to cluster them into structures called chromocenters.

The function of pericentromeric DNA and of chromocenters had remained largely unknown until cell biologist Yukiko Yamashita and her team at the University of Michigan set out to see what would happen to fruit fly cells without them. Simply mutating or excising pericentromeric DNA, which occurs as long sequences of tandem repeats, would have been impractical. So Yamashita’s group instead targeted a protein, D1, that’s known to interact with satellite DNA. When D1 was mutated, fruit fly germ cells did not survive for long. The researchers stained these mutant, dying germ cells with an antibody for Vasa, a cytoplasmic protein, and saw dark spots that turned out to be micronuclei, aberrant structures ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2018

Bright Lights, Big Problems

Scientists are exploring the ecological damage caused by artificially lit night skies

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control