The Maverick Bacterium

By Pascale Cossart The Maverick Bacterium Whether it’s powering through the cytoplasm leaving a trail of polymerized actin, activating an arsenal of virulence factors through changes in RNA structure, or storing the code for RNA transcripts on the wrong side of DNA, Listeria makes up its own rules for survival. © Hans Ackermann / Visuals Unlimited / Corbis After several years at the Pasteur Institute working on protein structure and

Written byPascale Cossart
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

After several years at the Pasteur Institute working on protein structure and DNA-protein interactions, I had the chance in the mid-1980s to change projects and start studying bacterial pathogens. With my colleague Brigitte Gicquel, I identified two models to work on: the bacterium that causes tuberculosis, a disease that infects about 9 million people per year, or Listeria, a bacterium that causes disease in some 2,500 people in the United States annually, with only about 500 deaths per year. I chose Listeria.

To me, it seemed a perfect model organism. Unlike Mycobacterium tuberculosis, Listeria appeared easy to manipulate genetically, it grew fast, and had an interesting life cycle. At the time, many studies were carried out on extracellular pathogens and it seemed valuable to investigate intracellular bacterial pathogens. As knowledge accumulated, I marveled at how, once Listeria enters a cell, it appears to don a cape made of the host ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies