The Sleeping Brain Can Learn

Humans can remember new sensory information presented during REM sleep, but this ability is suppressed during deep, slow-wave slumber.

Written byDiana Kwon
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ISTOCK, FRANKRAMSPOTTScientists have long pondered why we sleep. Despite being nearly ubiquitous across the animal kingdom, the exact role of slumber remains an open question. While multiple studies suggest that, in both rodents and humans, it helps consolidate previously learned memories, the question of whether new information can be learned while snoozing has yet to be answered. A study published today (August 8) in Nature Communications reports that the sleeping brain can learn new information, but only during rapid-eye movement (REM) sleep, the stage when dreams typically occur.

“One of the most interesting results of the current study is that the encoding of sensory memory is specific to certain sleep stages,” Thomas Schreiner, a postdoctoral researcher at Radboud University in the Netherlands who did not take part in the work, writes in an email to The Scientist. “While the authors made first steps in characterizing the neural circumstances of learning during sleep, clearly more research is needed to clarify the neural underpinnings of those processes.”

To assess people’s ability to learn during sleep, researchers played various acoustic patterns embedded in white noise to participants while they slept. “We decided to use [white noise] because it was a good example of something very complex . . . and we were interested in seeing whether ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies