The Weird Growth Strategy of Earth’s First Trees

Ancient fossils reveal how woodless trees got so big: by continuously ripping apart their xylem and knitting it back together.

Written byShawna Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A Xinicaulis tree trunk fossilPNASDuring the Devonian period, from about 420 million to 359 million years ago, complex terrestrial plant life really took off. The first rooted plants evolved, and by the end of the period, forests had colonized the environment, sucking up vast amounts of carbon, driving down global temperatures, and creating an entirely new kind of ecosystem.

Fossils of those first trees, cladoxylopsids, can still be seen in places such as Gilboa in the Catskill Mountains of upstate New York, where stumps up to 2 meters in diameter beckon visitors to imagine what the Earth might have looked like back before the dinosaurs. Even for paleobotanists, the arboreal remains—and cladoxylopsid remnants from other sites—left a lot to the imagination.

Cladoxylopsid remnants at the Gilboa fossil forest in New York StateFLICKR/DOUG KERRResearchers could tell that the trees had lacked wood, but what they couldn’t discern, says Chris Berry, a paleobotanist at Cardiff University in the U.K., was how woodless trees had managed to support such size. He and William Stein, a paleobotanist at Binghamton University in New York, “spent 10 years trying to work it out, sawing up bits of these big sandy stumps from Gilboa, and we got absolutely nowhere,” he says.

Then, in 2012, Hong-He Xu, a former postdoc of Berry now at the Nanjing Institute of Geology and Paleontology, unearthed a 15-centimeter cladoxylopsid stump in China’s northwest corner, not far from the Kazakhstan border. The fossil’s structures had ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform